**APPLICATION**

The loop flushing valve, applied in a hydrostatic transmission circuit, maintains high quality of the working fluid in the transmission power loop. While many transmissions can operate satisfactorily without a loop flushing valve, the addition of loop flushing improves fluid quality and generally extends transmission life.

Consider the loop flushing valve when any of these exist:
- Sustained operation at low pressure and high speed
- Operation where continuous pressure exceeds 1000 hours per year
- Cylinders in the hydrostatic circuit
- Flow restricting valves in the power loop
- Frequent operation of high pressure relief valves
- Long power loop lines
- Extraordinary life requirements

Sauer-Danfoss recommends monitoring fluid quality under field operating conditions for extended periods of time to determine loop flushing requirements. For a complete discussion of loop flushing and fluid quality, refer to Sauer-Danfoss bulletins BLN-9886 *Transmission Circuit Recommendations* and 520L0463 *Hydraulic Fluids and Lubricants, Technical Information*.

**DESCRIPTION**

The high pressure ports (1 and 2) of the valve are externally connected to the work or system auxiliary ports of the main hydrostatic transmission circuit. The valve drain port (4) must be externally connected to the case drain return line of the transmission — preferably at the motor so that fluid flushes through the motor case and returns to the reservoir.

The shuttle valve exposes the low pressure side of the circuit to the charge relief valve. When properly set (see *Adjustment Procedure*, page 5) the charge relief valve flushes a desired quantity of working fluid from the transmission power loop. The charge pump replaces this fluid.

You may specify a drain orifice to limit maximum flushing flow in circuits where the low side pressure is high or varies over a large range.
Loop Flushing Valve
Technical Information
General information

SPECIFICATIONS

System pressure

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Maximum high side</strong></td>
<td>480 bar [6961 psi]</td>
</tr>
<tr>
<td><strong>Maximum low side</strong></td>
<td>70 bar [1015 psi]</td>
</tr>
</tbody>
</table>

Charge relief setting

<table>
<thead>
<tr>
<th>Minimum</th>
<th>15 bar [218 psi]</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Maximum</strong></td>
<td>28 bar [406 psi]</td>
</tr>
</tbody>
</table>

Nominal charge relief settings are ±1.4 bar [±20 psi] and are set at a flow of 3.8 ±0.9 l/min [1 ±0.25 US gal/min] at 49º C [120º F]

MODEL CODE

8800485-

Charge pressure
15 to 28 bar, 1 bar increments
Example:
20 = 20 bar [290 psi]

Orifice
00 = None
09 = Ø 2.40 mm [0.0945 in.]
12 = Ø 3.19 mm [0.1255 in.]

PERFORMANCE

Valve without orifice

Valve with 2.40 mm [0.0945 in.] orifice
Mount the loop flushing valve on any convenient flat surface that provides adequate support around the two mounting holes. Ensure the surfaces under the mounting bolts form a flat plane.

Failure to provide a flat mounting surface could create valve housing distortion when the mounting bolts are torqued. Housing distortion may bind internal components and reduce the drive and/or braking capacity of the system.

⚠️ Warning
The loss of hydrostatic drive line power in any mode of operation may cause a loss of hydrostatic braking capacity. A braking system, redundant to the hydrostatic transmission, must be provided which is adequate to stop and hold the system should such a condition develop.
For initial setting of the valve package:

1. Plumb an in-line flow meter into the drain line.

If a flow meter is not available, use a clean container with a known volume and a stop watch to measure flow rate.

2. Set the brakes or otherwise restrict machine motion.

3. Stroke the transmission pump to build at least 34 bar [500 psi] differential system pressure.

4. Adjust the relief valve in the flushing valve package to obtain the desired drain flow. Typically 7.5 to 11.4 l/min [2 to 3 US gal/min] is sufficient. Rotating the adjusting screw counter-clockwise increases flow.

5. Torque the locknut 42 to 55 N•m [31 to 41 lbf•ft].

6. Verify that pump charge pressure is above recommended minimum.

7. Remove the flow meter from the circuit.

### Component installation torque

<table>
<thead>
<tr>
<th>Description</th>
<th>Wrench size</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauge port plugs</td>
<td>9/16 in hex</td>
<td>27 to 47 N•m [20 to 35 lbf•ft]</td>
</tr>
<tr>
<td>Charge relief lock nut</td>
<td>1 ¹/₁₆ in hex</td>
<td>42 to 55 N•m [31 to 41 lbf•ft]</td>
</tr>
<tr>
<td>Orifice plug</td>
<td>7/₁₆ in internal hex</td>
<td>22 to 27 N•m [16 to 20 lbf•ft]</td>
</tr>
<tr>
<td>Shuttle spool plugs</td>
<td>¹/₁₆ in</td>
<td>36 to 44 N•m [27 to 33 lbf•ft]</td>
</tr>
<tr>
<td>Hose/tube fittings</td>
<td>—</td>
<td>27 to 47 N•m [20 to 35 lbf•ft]</td>
</tr>
</tbody>
</table>
Enlarged **bold** type item numbers are recommended parts to be stocked for servicing.
## Replacement parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8800538</td>
<td>Housing assembly</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9005100-5600</td>
<td>Plug</td>
<td>3</td>
</tr>
<tr>
<td>2A</td>
<td>9004201-3700</td>
<td>O-ring</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>9005100-5600</td>
<td>Plug</td>
<td>2</td>
</tr>
<tr>
<td>3A</td>
<td>9004201-3700</td>
<td>O-ring</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9005100-5600</td>
<td>Plug</td>
<td>1</td>
</tr>
<tr>
<td>4A</td>
<td>9004201-3700</td>
<td>O-ring</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>8510012</td>
<td>Charge relief valve kit</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>9004201-6200</td>
<td>O-ring</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>8800242-0009</td>
<td>Orifice plug – Ø 2.40 mm [0.0945 in]</td>
<td>1 (opt.)</td>
</tr>
<tr>
<td>12</td>
<td>8800242-0011</td>
<td>Orifice plug – Ø 3.19 mm [0.1255 in]</td>
<td>1 (opt.)</td>
</tr>
<tr>
<td>13</td>
<td>8800550</td>
<td>Shuttle spool</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>513596</td>
<td>Spring guide assembly</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>518016</td>
<td>Special plug</td>
<td>2</td>
</tr>
<tr>
<td>16A</td>
<td>9004201-3700</td>
<td>O-ring</td>
<td>2</td>
</tr>
</tbody>
</table>
OUR PRODUCTS

Hydrostatic transmissions
Hydraulic power steering
Electric power steering
Electrohydraulic power steering
Closed and open circuit axial piston pumps and motors
Gear pumps and motors
Bent axis motors
Orbital motors
Transit mixer drives
Planetary compact gears
Proportional valves
Directional spool valves
Cartridge valves
Hydraulic integrated circuits
Hydrostatic transaxles
Integrated systems
Fan drive systems
Electrohydraulics
Microcontrollers and software
Electric motors and inverters
Joysticks and control handles
Displays
Sensors

Sauer-Danfoss Mobile Power and Control Systems
– Market Leaders Worldwide

Sauer-Danfoss is a comprehensive supplier providing complete systems to the global mobile market.

Sauer-Danfoss serves markets such as agriculture, construction, road building, material handling, municipal, forestry, turf care, and many others.

We offer our customers optimum solutions for their needs and develop new products and systems in close cooperation and partnership with them.

Sauer-Danfoss specializes in integrating a full range of system components to provide vehicle designers with the most advanced total system design.

Sauer-Danfoss provides comprehensive worldwide service for its products through an extensive network of Global Service Partners strategically located in all parts of the world.